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The stability of a binary liquid mixture heated from above is analysed. The heat 
transfer is driven by the imposed temperature difference between the horizontal bottom 
plate and the ambient gas. The mass flux in the layer is induced by the Soret effect. The 
gravitational effects are ignored, and the instability is driven by solutocapillarity and 
retarded by thermocapillarity. The interface is allowed to deform, and both the small- 
wavenumber and the Pearson-type instabilities are studied. Oscillatory instability can 
exist when the thermocapillary is destabilizing and the solutocapillarity is stabilizing. 

1. Introduction 
A horizontal liquid layer heated from below can become unstable, and various 

convective states can develop from the quiescent conductive state. There are two 
different types of mechanisms that drive the instabilities: (i) buoyancy due to the 
adverse density gradients (the Rayleigh-BCnard instability) and (ii) shear stress 
induced by the surface-tension gradient at the liquid/gas interface (the Marangoni 
instability). The second type persists in the absence of gravity. 

Pearson (1958) performed a linear stability analysis for layers with non-deformable 
top surfaces (infinite surface-tension limit) heated from below by a constant- 
temperature or a fixed-flux plate, and reported the critical Marangoni numbers for the 
thermocapillary instability. Scriven & Sternling (1963) allowed the surface to deform 
(finite surface tension), and showed that the conductive state always becomes unstable 
at zero wavenumber. Smith (1966) clarified this unrealistic effect of surface deformation 
by incorporating the stabilizing hydrostatic effect, and obtained non-zero critical 
Marangoni numbers for the instability. These early works have been followed by 
numerous extensions, including a recent study by Goussis & Kelly (1990). They showed 
that there are two different modes of thermocapillary instability, one reported by 
Pearson (1958) with O(1) wavenumber and the other associated with long-wave surface 
deformations. For sufficiently thin layers with the constant-temperature bottom plate, 
the Pearson type does not exist. The instability requires surface deformation, and 
occurs at zero wavenumber. 

If the layer is a mixture and subjected to a concentration gradient, analogous 
instabilities will occur due to the surface-tension variation with the local concentration 
change. Instabilities due to this solutocapillarity and the thermocapillarity can coexist 
and compete with each other, resulting in oscillatory convection. Castillo & Verlarde 
(1982), McTaggart (1983), Ho & Chang (1988), and Chen & Su (1992), among others, 
studied the onset of convection in double-diffusive layers, where constant temperature 
and concentration are prescribed on the bottom and constant heat- and mass-transfer 
coefficients are specified on the top surface. They performed a stability analysis and 
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obtained marginal states for both stationary and oscillatory instabilities. The 
oscillatory convection is predicted when the two capillary effects are opposing each 
other, and is preferred for certain range of parameters. They assumed that the free 
surface is non-deformable, and thus allowed only the Pearson-type instabilities. A 
fairly extensive review of free convection in fluid mixtures is given by Platten & Legros 
(1984). 

Most boundary conditions commonly used for the concentration are not easily 
realizable in practice. For example, it is very hard to maintain the constant- 
concentration condition on the bottom, used in the aforementioned studies of double- 
diffusive layers. In the present study, we consider a double-diffusive layer with a zero- 
mass-flux condition on both top and bottom boundaries. The mass flux in the fluid 
interior is then induced by local temperature gradients. This thermodiffusion of mass, 
so called the Soret effect, is non-trivial for some liquid mixtures, such as water/ethanol 
solution, and is well understood through non-equilibrium thermodynamics (see 
Landau & Lifshitz 1959; de Groot & Mazur 1962). Useful information, including the 
measurement of the Soret coefficient, can be found in the works of Platten & Legros 
(1984), Behringer (1985), Kolodner, Williams & Moe (1988), Van Vaerenberg, Colinet 
& Legros (1990), Cross & Hohenberg (1993), and the references therein. A stability 
analysis of fluid mixtures with the Soret effect for a rigid, low-heat-conducting surface 
has been reported by Castillo & Velarde (1978) for a few limiting cases. 

We allow the free surface to deform, and thus capture the long-wave mode of 
capillary instability as well as the Pearson type. With the particular application in mind 
of freeze coating or casting of liquid mixtures (Kuiken 1977), where the liquid layer is 
frozen from below, we consider a liquid mixture heated from above. We formulate the 
problem in 92, and perform a linear stability analysis in 93. The results are summarized 
in 94, along with a method for studying the nonlinear development of the instabilities. 

2. Basic state 
We consider a binary liquid mixture of density p, viscosity p, and thermal diffusivity 

K on a rigid plate as shown in figure 1. The liquid layer is bounded above by a passive 
gas of ambient temperature T,, and is laterally unbounded. The temperature of the 
bottom plate is maintained at a constant value T,, and the temperature difference 
AT( = T, - T,) induces the heat transfer across the liquid layer. 

In a Cartesian coordinate system (x,y) fixed on the bottom plate, with y directed 
vertically upward into the liquid, the fluid motion in the layer is described by the 
continuity equation, 

and the two components of the momentum equation, 

u,+vy = 0, (1) 

(1 /P) (u, + uu, + vu,) = -p, + v2u, 

(1 /P)  (vt + uv, + vv,) = -py + v2v, 
where V2 = a2/ax2 + a2/i3y2 and the Prandtl number 

P = V / K .  

Here, the spatial variables (x, y ) ,  temporal variable t ,  velocity (u, v), and pressure p are, 
respectively, measured in units of the mean layer thickness d, thermal diffusion time 
d ' / ~ ,  thermal diffusion speed ~ / d ,  and , u K / d 2 .  
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FIGURE 1. Liquid mixtures heated from above. 

The heat transfer in the liquid layer is governed by the energy equation 

I,+uT,+vT, = V2T, (4) 

where the temperature T is scaled by AT 
The mass transfer is described by 

ct + U C ,  + ucY = LV2 (C + @T), ( 5 )  

where c(x, y, t )  is the solute concentration in the mixture and the inverse Lewis number 
L is the ratio of the mass diffusivity D to the thermal diffusivity: 

L = D / K .  

Equation ( 5 )  shows that the diffusion of solute is induced not only by the concentration 
gradient but also by the temperature gradient. The extent of the thermal inducement 
of the concentration diffusion, namely the Soret effect, depends, in general, on the local 
concentration and temperature, but here it is measured by the parameter? 

4p = kTAT/T,, 

where k ,  is the thermodiffusion ratio (experimentally accessible) and is a dimensional 
reference temperature which can be taken to be the average temperature of the basic 
state T, = TB + ATBi/2( 1 + Bi) (see below). A detailed discussion on the derivation of 
( 5 )  through the Oberbeck-Boussinesq approximation can be found in the work by 
Hort, Linz & Lucke (1992) (see also Landau & Lifschitz 1959 and Behringer 1985). In 
(4), a cross-coupling in the temperature field, namely the Dufour effect, could exist, but 
is usually insignificant for liquid mixtures, as mentioned by Cross & Hohenberg (1993). 

The dimensional surface tension 5 at the liquid-gas interface varies with the-local 
temperature and concentration. Here, we assume that it is a linear function of T and 
C with coefficients a and p, respectively: 

where the zero subscripts denote reference values. For most common fluids, the surface 
tension decreases with the temperature increase, so that a is positive, but p can be either 
positive or negative depending on the composition of the mixture. 

t A common way of modelling the concentration dependency of the Soret effect is to use So c( 1 - c) 
in place of @, where So is the Soret number. Most liquid mixtures, however, do not follow this 
idealized behaviour. The present study thus simplifies it to a piecewise-constant approximation. 
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FIGURE 2. Purely conductive temperature and concentration profiles of the basic state. 

The boundary condition for the normal stress at the interface then becomes 

where T o  = &/AT and r (x,y,  t )  is the local deflection of the interface from its mean 
location y = 1. Here, 

N = (1 + ~ ~ ) " ' ,  

the non-dimensional mean surface tension 

ro = god/pK, 

the thermal capillary number C, = aAT/ao, and the solutal capillary number C, = 
/3/qo. The reciprocal of To is sometimes called as the crispation number. 

The location of the interface y = 1 +r is determined by introducing the kinematic 
condition 

r t  = v+urz at y = 1+r, (8) 

which states that the interface is a material surface. 

surface. Using (6) ,  we obtain 
The shear stress at the interface is induced by the surface-tension gradients along the 

where M ,  = daAT/(pK) and Us = d/3co/(pK). 

The parameters M ,  and as are proportional to the thermal and solutal Marangoni 
numbers, which will be defined later. 

The heat flux across the interface depends on the convective heat exchange with the 
gas phase, which is collectively approximated by the heat transfer coefficient h. The 
thermal boundary condition then is 

where the Biot number 

f is the heat conductivity of the mixture, and T" = T,/AT 

Bi = hd/k, 
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The mixture is non-volatile, and so the mass flux across the interface is zero, which 
gives 

cl/-yzcz+@(Ty-yz T,) = 0 at y = 1 +y. (1 1) 

On the bottom plate, the velocity, the scaled temperature, and the mass flux all 
vanish, so that 

u = v = T = c , + @ T , = O  at y=O.  (12) 

One set of solutions of interest to the system (2F(12) represents a hydrodynamically 
quiescent state, where the fluid is at rest and the heat and mass transfer are purely 
diffusive. In this case 

(13) 
_ _ _  
u = y = p =  r=  0, 

where TB = TB/AT, and 

where the overbar represents the basic state. In (15), 

is the mean concentration of the solute. 
The temperature and solute concentration profiles of the basic state are illustrated 

in figure 2. The temperature is TB on the bottom and increases linearly to 
Bi/(l + Bi) + TB at the interface. If Bi-t 0, the heat flux across the free surface vanishes, 
and the temperature gradient in the liquid layer disappears. Therefore, for the present 
analysis to be of any interest, the heat transfer coefficient at the liquid/gas interface 
should be non-zero, and the thermal conductivity of the mixture should be finite. If 
Bi+ co, the free surface behaves like a perfect conductor, and so the surface temperature 
becomes that of the ambient gas. The solute concentration also varies linearly, but its 
gradient depends on the sense of the parameter @. If rP > 0 (or < 0), the concentration 
decreases (or increases) vertically upward. As @ --f 0, the Soret effect disappears, and so 
the concentration becomes uniform. 

The layers heated from below can be recovered by replacing the temperature scale AT 
with -AT. This changes Bi/(l + Bi) into - Bi/(l + Bi) with other parameters and 
variables unaffected. 

3. Linear stability analysis 
It is expected that the conductive basic state (13)-(15) ceases to persist if the 

temperature gradient exceeds a certain critical value. Marangoni instabilities induce 
fluid flow, and various convective states set in. When the layer is cooled from below 
(AT > 0) and the surface tension decreases with temperature (a > 0) as usual, so that 
&fT is positive, the thermocapillarity is stabilizing. The solutocapillarity, however, can 
be destabilizing if @a8 is positive. In this section, we quantify this Marangoni 
instability through linear stability analysis, and study the competition between the two 
capillary effects. 
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6 superimposed on the basic state, and write the solutions of the full system as 
We consider disturbances of arbitrary horizontal wavenumber k and small amplitude 

u = 6euteikxI/(y), 

T =  T+6euteikxO(y), 

c = c+6euteik5S(y), 

y = 6 eUt eikxyO, 

where CT represents the complex growth rate of the disturbances. The capillary numbers 
C, and C, are usually very small, and will be set to zero in the analysis while the other 
parameters are set to be of order unity. 

If we substitute these into the governing system (2)-(5) with the boundary conditions 
(7)-(12) and linearize in 6, we obtain, for the fluid flow, 

with the boundary conditions 
V(0) = V ( 0 )  = 0, 

k4V(l ) -z [  r0 C""(1)-(3k2+;) V'(l)] = 0, 

Bi M,-@M, +- [ V"( 1) - (3k2 + CT) V'( l)] = 0, (20) 1+Bi r 0 k 2  

where the prime denotes differentiation with respect to y .  The fluid-flow problem is 
coupled with the heat and mass transfer through the shear-stress condition (20). For 
the heat transfer we get 

V (21) 
Bi 

1+Bi 
8"-(k2+CT)0 = - 

with O(0) = B'(1) + BiO( 1) = 0, (22) 

and for the mass transfer 

with 

The coefficient yo for the free-surface deformation is obtained as 

s'(0) + W ( 0 )  = s'( 1) + @O'( 1) = 0. (24) 

(2 5)  
1 

To k4 
q0 = -[C""(1)-(3k2+g) V(l)]. 

The solutions for V, 0, and S are expanded in terms of hyperbolic sines and cosines, 
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and after some manipulations, as detailed in the Appendix, we obtain the characteristic 
equation 

22, sinh k - (1 + z i )  sinh kz,  - 22, cosh k + ( 1  + zi) z ,  cosh kz,  + -- Bi (M,-@M,) 
u l + B i  

P .  P 
x (-z,sinhk+- P -  1 sinh kz, + z ,  sinh kz,  + z1 cosh k --z1 P -  1 cosh kz,  

sinh kz,  + - z2 sinhkz, 
1 Bi P 

1 - L  
z1 cash kz,  + -~ 

1 +- 
P -  1 ) c l + B i  

1 cosh kz,  + z5 cosh kz, Z 1  z1 cosh kz,  + z4 P 
z ,  ( P -  1) ( P -  L )  ( P -  1 )  (1 - L)  

-- sinh z, - 

Bi a,-@@, +- [( 1 + z i )  z1 sinh k - 22, z ,  sinh kz,  
1+Bi T , k  

- ( 1  + z;) Z ,  cash k + 22, cash kz,] = 0, 

where the zt are defined in the Appendix. 

3 . 1 .  Stationary branch (a = 0 )  
The stability bounds, beyond which instabilities develop without temporal oscillations, 
can be obtained by setting (T = 0. As shown in the Appendix, the characteristic 
equation for this stationary instability is reduced to 

k4 sinh k cosh k - k sinh4 k 
k cosh k +  Bisinh k 

8k2 sinh k(k - sinh k cosh k )  + ( M ,  - LM,) 

M ,  - LM, 
- Ms(k3 sinh k - k2 cosh k + 2k sinh k - sinh2 k cosh k)  - 8k3 sinh k = 0. 

(27) 
TO 

Considering the temperature profile (14) and the concentration profile (1 5 )  of the basic 
state, we notice that 

Bi @ - hd pdATc,k,  
and M =-- M , = -  

Bi - hd adAT M =- 
'- 1+BiL  hd+k pDT, T - l + ~ i  T--- hd+& ,UK 

are the thermal and solutal Marangoni numbers, respectively.? 
The last term in (27) describes the effects of free-surface deformations. In the large- 

surface-tension limit, r,+ co, the effects of surface deformations vanish. The 
characteristic equation (27) then is reduced to that for a non-deformable surface. In 
this case, the following comparisons can be made to the analysis performed by Pearson 

t In experiments M ,  is often controlled by changing AT. If one wishes to measure the solutal 
Marangoni effect independent of AT, one can rewrite M ,  = @M,/L and use @ as an alternative 
parameter, where the separation ratio @ = Pk, c,/aT,. 
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FIGURE 3. Stability diagram for a non-deformable surface analogous to the Pearson’s (1958) case 
of (a) a conducting and (b) insulating bottom boundary. S denotes stable and U unstable. 

(1958) for pure thermocapillary instability. If M ,  + 0 while LM, = O( 1)’ we recover his 
‘conducting case’, with his thermal Marangoni number replaced by an effective 
Marangoni number 

In this limit, the disturbances for the solute and the temperature are related by S ( y )  = 

- @O(y) (see (21) and (23) for k = 0). If L = O(1) with M, --f 0, we get Meff  = - M,. 
The minus sign in front of M ,  occurs because the sign of the temperature difference 
in the conductive state is opposite to that in Pearson’s case, where the liquid layer is 
heated from below. In the present case, the thermocapillary (with M ,  > 0) stabilizes 
the flow while the solutocapillarity (with M, > 0) destabilizes, as can be deduced from 
the stability diagram in figure 3 (a). If M ,  + 0 and L + 0, then Meff  + 0 and Pearson’s 

Meff = - M ,  + LM,. 
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FIGURE 4. The thermocapillary effects on the solutocapillary instability when the surface 
is non-deformable and L = Bi = 0. The broken lines are for Bi > 0. 

0 50 100 

MS 

FIGURE 5. Pure solutocapillary instability for a non-deformable surface when Bi = 0. 

‘insulating case’ is recovered, with his thermal Marangoni number replaced by the 
solutal Marangoni number M, and his Biot number set to zero. The corresponding 
stability diagram is shown in figure 3 (b). It is noteworthy that the pure solutocapillarity 
instability occurs in the form of long waves, which is often referred to as ‘zero- 
wavenumber’ instability. 

Figure 4 shows the stationary branches when both the thermo- and solutocapillarity 
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FIGURE 6. Stability diagram for a non-deformable surface when Bi = 0. 
Stable region does not exist for M ,  > 48. 

are present. The branch for M ,  = 0 is identical to that in figure 3 ( b )  (Pearson’s 
insulating case), and intersects the horizontal axis vertically at M ,  = 48. If M ,  > 0 (or 
M ,  < 0) the thermocapillarity stabilizes (or destablizes) the flow, and so the stable (or 
unstable) region expands. For sufficiently large negative values of M ,  (strong 
thermocapillary instability), the branch crosses the vertical axis, so that instability 
occurs even for negative M,. For a non-deformable surface (T+ co) long disturbances 
(small k)  are not affected by the thermocapillarity of the ‘conducting’ type, so that the 
intersection with the horizontal axis stays at M ,  = 48 regardless of the values of M ,  
and Bi. The two broken lines show the effects of the heat transfer coefficient at the 
gas/liquid interface. As Bi increases, the thermocapillary effect diminishes and the 
branches move toward that for M ,  = 0 until they coincide for B i b  co, as can be 
expected from (27). 

A non-zero inverse Lewis number L enhances the solute convection, and thus 
destabilizes the flow. Figure 5 displays the stationary branches for three different L. As 
L increases, the unstable region expands. As in the thermocapillary destabilization, 
disturbances of small wavenumbers are not affected, so that all branches start at 
M, = 48 at k = 0. However, contrary to the thermocapillary destabilization, the branch 
never crosses the vertical axis; there is no instability for negative M,. 

Figure 6 shows three stationary branches in the (M,, M,)-plane for a non- 
deformable interface. When L = 0, the branch is vertical for M ,  > 0. The ‘zero- 
wavenumber’ instability persists with the critical Marangoni number of 48, as shown 
in figure 4. As M ,  decreases further, the thermocapillary destabilization makes the 
branch bend with decreasing slope until it becomes almost horizontal (not shown in 
the figure) for M T +  - 00. When L > 0, the critical solutal Marangoni number 
corresponds to O( 1) wavenumber (no longer the ‘zero-wavenumber ’ instability) as 
shown in figure 5 ,  and becomes sensitive to M,. The bending, therefore, occurs for 
M ,  > 0, and the rate of decrease in slope is smaller. Regardless of L, all branches pass 
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FIGURE 7. Pure solutocapillary instability for a deformable surface when Bi = 0 and r,, = 10. 
The broken lines are the corresponding branches for a non-deformable surface. 

-100 0 100 

Ms 
FIGURE 8. The thermocapillary effects on the solutocapillary instability when the surface is 

deformable, Bi = 0, L = 0.5 and To = 10. 

through (0,79.6), a point for pure thermocapillary instability. The thermal Marangoni 
number M ,  at this point is in agreement with the critical Marangoni number for the 
‘conducting’ case, or the branch for Bi = 0 in figure 3(a). 

The effect of surface deformation can be studied by allowing a finite value of To. As 
tabulated for a few pure liquid layers by Smith (1966, table l), the values for To are 
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usually very large for most common fluids, although for the highly viscous silicone oil 
I', is near order unity. 

When both M ,  and L are zero, the surface deformation has no effect on the stability 
of the flow, and so figure 3(b) is unaffected by variations of To. This can be easily 
deduced from (27) with M ,  = L = 0. Figure 7 shows the stationary branches for three 
different values of L with M ,  = 0 and r, = 10. The broken lines indicate the 
corresponding branches with no surface deformation (r, + 00). As expected, the lines 
for L = 0 overlap each other. For non-zero values of L, the intersection point with the 
horizontal axis is shifted to the origin. The critical solutal Marangoni number (Ms)c is 
always zero, and the zero-wavenumber instability occurs. For large k, the effect of 
surface deformation diminishes, and all branches approach those for r, + co. 

The cases shown in figure 7 for L =l= 0 are analogous to those reported by Scriven & 
Sternling (1963, figure 2) for thermocapillarity of the 'insulating' type. However, they 
excluded the area near the origin in their stability diagram, and failed to notice that 
(Ms)c is zero rather than - 00 when the heat flux (solute flux in our case) is zero at the 
surface. The fact that the branch never crosses the vertical axis for M ,  2 0 makes 
sense. 

In most experiments, (LW,)~ will be positive owing to the hydrostatic stabilization. As 
discussed by Smith (1966) and by Scanlon & Segel(1967), the effect of gravity can be 
incorporated through the normal-stress condition (7). A term proportional to - 7 We 
would be added to the right-hand side of the equation, where We = pgd2/cr, is the 
Weber number. In the characteristic equations above, To would be replaced by 

r = r, (1  + We/k2). 

The small-wavenumber behaviour of the stationary branch in the (k, M,)-plane can be 
obtained by expanding (27) for small k and solving for M,, which gives 

+ O(k2). 
48 + 72M,/(I', We) 

1 + 72L/(T0 We) 
M ,  = 

In the absence of gravity (We = 0), we get (Ms)c = M,/L, which is consistent 
with figure 7 for M ,  = 0 and figure 8 below for M ,  $; 0. In the rigid-surface limit, 
I', We + co and (28) reduces to M ,  = 48 + O(k2). 

Figure 8 shows three stationary branches for M ,  = - 50,0, and 50 with L = 0.5 and 
ro = 10. The values for (Ms)c are, respectively, - 100, 0, 100, consistent with (28). All 
branches show zero-wavenumber instability. 

In figure 9, three stationary branches are drawn in the (M,, M,)-plane for different 
values of To with L = 0.5. The branch with no label corresponds to the non-deformable 
surface (I', + co). As explained for figure 6, the branch cannot cross the M, = 48 line. 
For M ,  somewhat larger than zero, the zero-wavenumber instability occurs, and the 
stability bounds are fixed at M, = 48. When the surface is deformable, the branch 
crosses the M, = 48 line. As seen figure 8, finite-wavenumber instability occurs for 
M, > 48. The thermocapillary stabilization is more effective in this range, and so the 
stable region expands with the decrease of the mean surface tension. For M, < 48, 
zero wavenumber occurs if the surface is deformable. Since the critical value for 
the instability is given by (Ms)c = M,/L, the branch is a straight line passing through 
the origin ( M ,  = M ,  = 0) with slope L regardless of the value of To. In this range, the 
surface deformation further destabilizes the flow. 
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S 

FIGURE 9. Stability diagram for a deformable surface when Bi = 0 and L = 0.5. For a finite To, the 
stable region penetrates beyond M ,  = 48, so that there is additional stabilization and destabilization 
due to the long-wave mode, which is absent for the non-deformable surface. 

3.2. Oscillatory branch 
The threshold for the Hopf bifurcation beyond which the disturbances grow with 
temporal oscillations can be obtained from (26) by setting cr = io,, where wH is the 
Hopf frequency. The characteristic equation (26) then takes the form 

Ak, = O 7  (29) 

wherefis a complex function and P is the parameter vector. Given the wavenumber k 
and all the parameter values except M,, we iterate on wH and M, until they satisfy the 
real and imaginary parts of (29) simultaneously. Oscillatory branches are obtained by 
extending the solution for M ,  for different values of k or other parameters. 

In figure lO(a), oscillatory branches (indicated by broken lines) are shown in the 
(k ,  M,)-plane for M ,  = - 50, L = 0.5, I-',, = 10, and Bi = 0. The solid line indicates the 
stationary branch for these parameters. The stationary branch does not depend on the 
Prandtl number. For the oscillatory branch, however, P must be specified: three 
different values are chosen. There is little change from the branch for P = 5 for larger 
values of P, so that P = 5 can be considered as a representative of large Prandtl 
number. For all Prandtl numbers, the oscillatory branch starts at M ,  zz 147 on the 
horizontal axis and terminates on the stationary branch. The oscillatory instability is 
enhanced as the Prandtl number decreases. The temporal oscillation seems to occur 
owing to the competition between the destabilizing thermocapillarity and the stabilizing 
solutocapillarity. The critical solutal Marangoni number (Ms)c for the oscillatory 
instability is always smaller than that for the stationary instability. Figure 10(b) shows 
the Hopf frequency wH of the branch P = 5. The Hopf frequency is defined for - 147 < 
M, < -23.6, where the branch P = 5 exists. It increases from zero at M ,  = - 147, 
and reaches a maximum near the midpoint before it decreases to zero at M ,  = - 23.6. 

It is noteworthy that the oscillatory branch is confined to the M ,  < 0 region. It does 
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FIGURE 10. (a) Oscillatory branches (broken lines) when Bi = 0, M ,  = - 50, L = 0.5, 
and To = 10. (b) The Hopf frequency oH for P = 5. 

not cross the M ,  = 0 line. Therefore, stabilizing thermocapillarity ( M ,  > 0) coupled 
with destabilizing solutocapillarity ( M ,  > 0) does not generate oscillations. In 
water-alcohol mixtures, the Soret coefficient, or @ in the present analysis, changes its 
sense to negative values for sufficiently high alcohol concentration. Therefore, if one 
wishes to realize the oscillatory instability in these mixtures, one must heat them from 
below (AT< 0 and thus M ,  < 0) and use dilute solutions (a > 0 and thus M, < 0). 
For a non-deformable surface (To + a), the intersection point of the stationary branch 
on the horizontal axis moves to a positive value M ,  = 48. Thus, we have not found any 
oscillations for layers with non-deformable surfaces. 

In figure 11 (a), three oscillatory branches and the corresponding stationary branch 
are shown for the same parameter values as those for figure 10 except that To = 1000. 
All three Prandtl numbers give almost the same oscillatory branches, so that the three 
broken lines look collapsed into one. As the surface tension increases, the free surface 
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FIGURE 11. (a) Oscillatory branches (broken lines) when Bi = 0, M ,  = -50, L = 0.5, and 
I-, = 1000. (b) Additional branches for P = 0.2. 

behaves more like a rigid surface. The region for oscillatory instability decreases 
accordingly, and seems to disappear as To+ 00. This explains why we could not find 
oscillations for the non-deformable surface. For layers with very small Prandtl 
numbers, isolated oscillatory branches are found for very large surface tension, as 
shown in figure 1 1 (b). These branches seem to extend toward M ,  = - co. Liquid metals 
usually have small Prandtl numbers but their Soret effects are very small. In order to 
obser,ve the isolated branches, extremely large temperature gradients may be required. 

In figure 12, the oscillatory and stationary instability bounds are shown for P = 5 ,  
L = 0.5, and L = 5. The oscillatory instability exists when the thermocapillarity is 
destabilizing and the solutocapillarity is stabilizing, as explained above. The oscillatory 
branch, therefore, terminates on the stationary branch in the third quadrant of the 
( M T ,  M,)-plane. In the parameter ranges where the oscillatory instability can occur, it 
is preferred to the stationary mode. As is obvious from figures 10 and 11, the oscillatory 
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instability for moderate and large Prandtl numbers occurs for small wavenumbers. The 
oscillatory branch in figure 12 thus corresponds to zero wavenumber. The stationary 
branch switches from zero-wavenumber to O( 1)-wavenumber instabilities in the first 
quadrant. The critical solutal Marangoni numbers for the zero-wavenumber 
instabilities are proportional to the Lewis number 1/L for both oscillatory and 
stationary instabilities, so that the slopes of the branches in the third quadrant increase 
with L, as seen in figure 12(b). 

4. Concluding remarks 
A linear stability analysis is performed for a layer of binary liquid mixture heated 

from above. The gravitational effects, such as the buoyancy-driven convection, are 
ignored. The fluid motion is induced by the thermo- and solutocapillary effects. The 
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heat transfer across the liquid layer is driven by the imposed temperature gradient, 
whereas the mass transfer exists due to the Soret effect. 

The quiescent state with purely conductive heat and mass transfer can become 
linearly unstable owing to the solutocapillarity. Since the layer is heated from above, 
the thermocapillarity stabilizes the flow for most common fluids, whose surface tension 
decreases with the temperature increase. 

In the large-surface-tension limit (non-deformable surface), the solutocapillary 
instability is analogous to the thermocapillary instability reported by Pearson (1958) 
with the ‘conducting’ and the ‘insulating ’ cases present simultaneously. Therefore, 
both the zero- and O(1)-wavenumber instabilities can occur depending upon the 
parameter values, as detailed in the previous section. For the non-deformable surface, 
the long-wave thermocapillary stabilization is absent (as discussed by Goussis & Kelly 
(1 990), this mode requires surface deformation). The thermocapillary stabilization thus 
is not effective on the zero-wavenumber solutocapillary instability. Regardless of the 
thermal Marangoni number, the flow becomes always unstable if the solutal Marangoni 
number exceeds 48 (see figure 6). 

For a deformable surface, there is competition between the long-wave mode of the 
thermocapillary stabilization and of the solutocapillary destabilization. Therefore, for 
most common fluids, the critical solutal Marangoni number is a positive number. The 
corresponding wavenumber at the onset is of O(1) for sufficiently strong ther- 
mocapillary stabilization. The present results also clarify the stability bounds reported 
by Scriven & Sternling (1963) for an analogous problem. 

For a deformable surface, the oscillatory instability is also found. It occurs when the 
thermocapillarity is destabilizing and the solutocapillarity is stabilizing. When a layer 
is heated from above and the interfacial tension decreases with temperature, only 
stationary convections are likely to occur. 
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Division of Basic Energy Sciences, through Grant No. DE FG02-86ER13641 and by 
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Appendix. Derivation of the characteristic equation 
The solution of (17) that satisfies the boundary conditions (18)-(19) is 

V(y)  = zo sinh ky - sinh kz, y - z1 cosh ky + z1 cosh kz,, y 

where zo = (1 + B /  Pk2)1’2 

z,sinh k-sinhkz,+(~z,/T0k)[(1 +zi)coshk-2coshkz0] 
(cosh k - cosh kz,) + (g/T, k) [( 1 + zi) sinh k - 22, sinh kz,] . 

and z1 = 

Here, an arbitrary constant factor is set to unit without loss of generality. The solution 
of (21) subject to the conditions (22) is 

P 
P- 1 

-z,sinhky+-sinhkz,y 

z1 cosh kz, y ) ,  (A 2) 
P 1 

+z~sinhkz,y+z,coshky--z,coshkz,y+- 
P- 1 P- 1 
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z, = (1 + g/k2),” 

P Z 

P- 1 P- 1 (z, B, - kz,) sinh k - - (Bi- kz, z,) sinh kz, - 1 

P 
x (kz, sinh kz, + Bi cosh kz,) + (kz, - z1 Bi) cosh k - - 

P- 1 

and 

x (kz, - Biz,) cosh kz, /(Bisinh kz, + kz, cosh kz,). 1 
From (23) and (24), we obtain 

L 
S(y) = -- z, sinh ky + z3 sinh kz, y + - z2 sinh kz, y 

a l + B i  1-L 

--sinhkz,y-zz,coshky-z,z3cosh z4 kz,y 
z, 

z1 cosh kz, y + z, cosh kz, y 
L 

+(P- 1)(1- L) 
where 

P P 
(P- 1)(P-L) P- 1’ 

‘Izp sinhkz, 
z, = z,sinhkz, [ (P- pzozl l)(P-L) sinhkz,- (P-l)(l-L) 

1 z z  - PZO cosh kz, - 2 cosh kz, + z4 cosh kz, . 
(P- 1) (P- L) 1-L 

The characteristic equation (26) can be obtained by substituting the eigenvalues 

For stationary branches a+ 0, in which case the eigenfunctions are 
(A 1)-(A 3 )  into the shear-stress condition (20). 

k cosh k - sinh k 
sinh k 

y sinh ky - ky cosh ky, V ( y )  = sinhky+ 

Y -Y’) 
1 Bi k cosh k - sinh k 
4 l f B i  ‘(Y) = -- [ (‘6 - k2 sinh k 

k cosh k - sinh k 
sinh 

x sinh ky + (3y + 
and 

Sc k cosh k- sinh k))’ k cosh k - sinh k 
-3y- sinhky+(s( ksinhk sinh k 

where 

k2 cosh2 k + k sinh kcosh k + sinh2 k i- Bi(k2 + k sinh k cosh k + sinh2 k) 
k2 sinh k (k cosh k + Bisinh k) 

Z6 = - 

The characteristic equation then is reduced to (27). 
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